Lecture 10 Model Checking for CTMCs

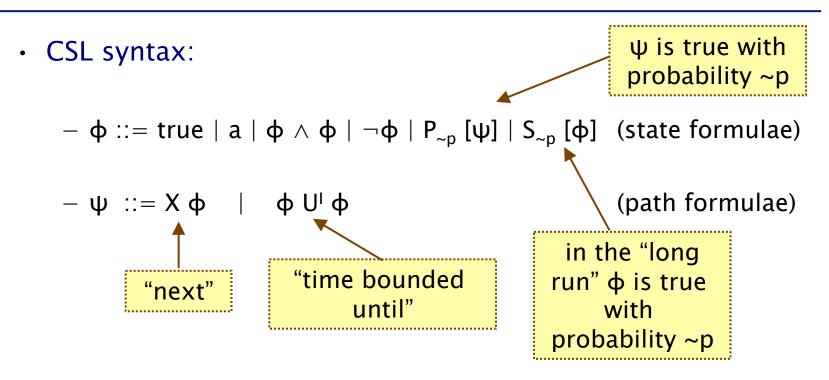
Dr. Dave Parker

Department of Computer Science University of Oxford

Overview

- CSL model checking
 - basic algorithm
 - untimed properties
 - time-bounded until
 - the S (steady-state) operator
- Rewards
 - reward structures for CTMCs
 - properties: extension of CSL
 - model checking

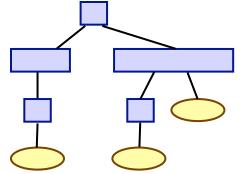
CSL: Continuous Stochastic Logic



- where a is an atomic proposition, I an interval of $\mathbb{R}_{\geq 0}$, $p \in [0,1]$ and $\sim \in \{<,>,\leq,\geq\}$

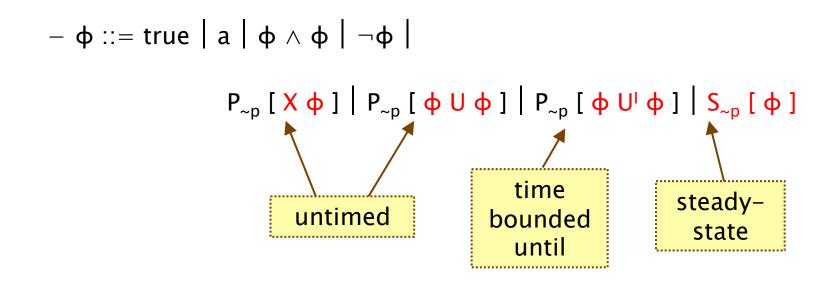
CSL model checking for CTMCs

- Algorithm for CSL model checking [BHHK03]
 - inputs: CTMC $C = (S, s_{init}, R, L)$, CSL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \}$, the set of states satisfying ϕ
- Often, also consider quantitative results
 - e.g. compute result of $P_{=?}$ [$F^{[0,t]}$ minimum] for $0{\le}t{\le}100$
- Basic algorithm similar to PCTL for DTMCs
 - proceeds by induction on parse tree of φ
- For the non-probabilistic operators:
 - Sat(true) = S
 - $\ Sat(a) = \{ \ s \in S \ | \ a \in L(s) \ \}$
 - $\ Sat(\neg \varphi) = S \ \setminus \ Sat(\varphi)$
 - $\ Sat(\varphi_1 \ \land \ \varphi_2) = Sat(\varphi_1) \ \cap \ Sat(\varphi_2)$



CSL model checking for CTMCs

• Main task: computing probabilities for P_{-p} [·] and S_{-p} [·]



- where $\varphi_1 U \varphi_2 \equiv \varphi_1 U^{[0,\infty)} \varphi_2$

Untimed properties

- Untimed properties can be verified on the embedded DTMC
 - properties of the form: P_{-p} [X φ] or P_{-p} [$\varphi_1 U \varphi_2$]
 - use algorithms for checking PCTL against DTMCs
- Certain qualitative time-bounded until formulae can also be verified on the embedded DTMC
 - for any (non-empty) interval I

 $s \models P_{\sim 0} [\phi_1 \cup \phi_2]$ if and only if $s \models P_{\sim 0} [\phi_1 \cup \phi_2]$

- can use precomputation algorithm Prob0

Model checking – Time-bounded until

- Compute Prob(s, $\phi_1 \cup \phi_2$) for all states where I is an arbitrary interval of the non-negative real numbers
- Note:
 - $\operatorname{Prob}(s, \varphi_1 \cup \varphi_2) = \operatorname{Prob}(s, \varphi_1 \cup \varphi_2)$

where cl(I) denotes the closure of the interval I

- Prob(s, $\phi_1 U^{[0,\infty)} \phi_2$) = Prob^{emb(C)}(s, $\phi_1 U \phi_2$) where emb(C) is the embedded DTMC
- Therefore, 3 remaining cases to consider:
 - $I = [0,t] \text{ for some } t \in \mathbb{R}_{\geq 0}, I = [t,t'] \text{ for some } t \leq t' \in \mathbb{R}_{\geq 0}$ and I = [t,∞) for some $t \in \mathbb{R}_{\geq 0}$
- Two methods: 1. Integral equations; 2. Uniformisation

Time-bounded until (integral equations)

• Computing the probabilities reduces to determining the least solution of the following set of integral equations

- (note similarity to bounded until for DTMCs)

- Prob(s, $\phi_1 U^{[0,t]} \phi_2$) equals
 - -1 if $s \in Sat(\varphi_2)$,
 - $\ 0 \ \text{if} \ s \in \text{Sat}(\neg \varphi_1 \ \land \neg \varphi_2)$
 - and otherwise equals

probability, in state s', of satisfying until before t-x time units elapse

$$\int_{0}^{t} \sum_{s' \in S} \left(\mathsf{P}^{\mathsf{emb}(\mathsf{C})}(s,s') \cdot \mathsf{E}(s) \cdot \mathsf{e}^{-\mathsf{E}(s) \cdot x} \right) \cdot \mathsf{Prob}(s',\phi_1 \cup \mathsf{U}^{[0,t-x]} \phi_2) dx$$

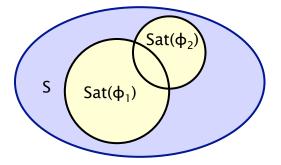
probability of

moving from s

to s' at time x

- One possibility: solve these integrals numerically
 - e.g. trapezoidal, Simpson and Romberg integration
 - expensive, possible problems with numerical stability

- Reduction to transient analysis...
- Make all ϕ_2 states absorbing
 - from such a state $\varphi_1 U^{[0,x]} \varphi_2$ holds with probability 1



- Make all $\neg \phi_1 \land \neg \phi_2$ states absorbing
 - from such a state $\varphi_1 U^{[0,x]} \varphi_2$ holds with probability 0
- Formally: Construct CTMC $C[\phi_2][\neg \phi_1 \land \neg \phi_2]$
 - where for CTMC C=(S,s_{init},R,L), let C[θ]=(S,s_{init},R[θ],L) where R[θ](s,s')=R(s,s') if s \notin Sat(θ) and 0 otherwise

• Problem then reduces to calculating transient probabilities of the CTMC $C[\phi_2][\neg \phi_1 \land \neg \phi_2]$:

Prob(s,
$$\phi_1 U^{[0,t]} \phi_2$$
) = $\sum_{s' \in Sat(\phi_2)} \pi^{C[\phi_2][\neg \phi_1 \land \neg \phi_2]}(s')$
transient probability: starting in state s, the probability of being in state s' at time t

• Can now adapt uniformisation to computing the vector of probabilities <u>Prob</u>($\phi_1 \cup U^{[0,t]} \phi_2$)

- recall Π_t is matrix of transient probabilities $\Pi_t(s,s') = \underline{\pi}_{s,t}(s')$ - computed via uniformisation: $\Pi_t = \sum_{i=0}^{\infty} \gamma_{q\cdot t,i} \cdot (P^{\text{unif}(C)})^i$

Combining with: Prob(s, $\phi_1 U^{[0,t]} \phi_2$) = $\sum_{s' \in Sat(\phi_2)} \frac{\pi}{\sigma_{s,t}} \frac{\pi}{\sigma_{s,t}} \sum_{s' \in Sat(\phi_2)} \frac{\pi}{\sigma_{s,t}} \frac{\pi}{\sigma_{s,t}} \frac{\pi}{\sigma_{s,t}} \sum_{s' \in Sat(\phi_2)} \frac{\pi}{\sigma_{s'}} \sum_{s' \in Sat(\phi_2)} \sum_{s' \in S$ •

$$\underline{\operatorname{Prob}}(\Phi_{1} \ U^{[0,t]} \ \Phi_{2}) = \Pi_{t}^{C[\Phi_{2}][\neg \Phi_{1} \land \neg \Phi_{2}]} \cdot \underline{\Phi_{2}} \\
= \left(\sum_{i=0}^{\infty} \gamma_{q\cdot t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[\Phi_{2}][\neg \Phi_{1} \land \neg \Phi_{2}])} \right)^{i} \right) \underline{\Phi_{2}} \\
= \sum_{i=0}^{\infty} \left(\gamma_{q\cdot t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[\Phi_{2}][\neg \Phi_{1} \land \neg \Phi_{2}])} \right)^{i} \cdot \underline{\Phi_{2}} \right)$$

• Have shown that we can calculate the probabilities as:

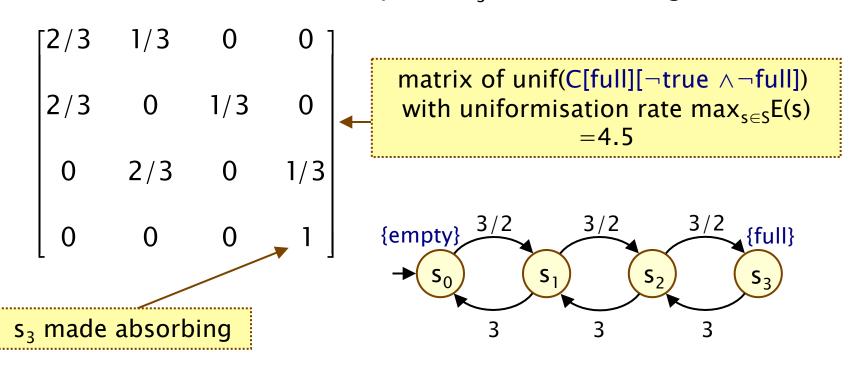
$$\underline{\operatorname{Prob}}(\phi_1 \ \mathsf{U}^{[0,t]} \ \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t,i} \cdot \left(\ \mathsf{P}^{\operatorname{unif}(\mathsf{C}[\phi_2][\neg \phi_1 \land \neg \phi_2])} \right)^i \cdot \underline{\phi_2} \right)$$

- Infinite summation can be truncated using the techniques of Fox and Glynn [FG88]
- Can compute iteratively to avoid matrix powers:

$$\begin{pmatrix} \mathsf{P}^{\mathsf{unif}(\mathsf{C})} \end{pmatrix}^{0} \cdot \underline{\Phi}_{2} = \underline{\Phi}_{2}$$
$$\begin{pmatrix} \mathsf{P}^{\mathsf{unif}(\mathsf{C})} \end{pmatrix}^{\mathsf{i+1}} \cdot \underline{\Phi}_{2} = \mathsf{P}^{\mathsf{unif}(\mathsf{C})} \cdot \left(\begin{pmatrix} \mathsf{P}^{\mathsf{unif}(\mathsf{C})} \end{pmatrix}^{\mathsf{i}} \cdot \underline{\Phi}_{2} \end{pmatrix}$$

Time-bounded until - Example

- $P_{>0.65}$ [$F^{[0,7.5]}$ full] $\equiv P_{>0.65}$ [true U^[0,7.5] full]
 - "probability of the queue becoming full within 7.5 time units"
- State s_{3} satisfies full and no states satisfy $\neg true$
 - in C[full][¬true $\land \neg$ full] only state s₃ made absorbing



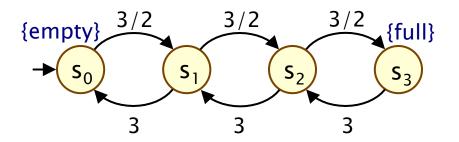
Time-bounded until - Example

Computing the summation of matrix-vector multiplications

$$\underline{\operatorname{Prob}}(\varphi_1 \, U^{[0,t]} \, \varphi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[\varphi_2][\neg \varphi_1 \land \neg \varphi_2])} \right)^i \cdot \underline{\varphi_2} \right)$$

- yields Prob($F^{[0,7.5]}$ full) \approx [0.6482, 0.6823, 0.7811, 1]

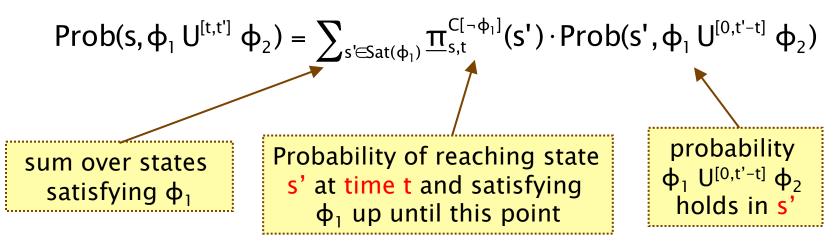
• $P_{>0.65}$ [$F^{[0,7.5]}$ full] satisfied in states s_1 , s_2 and s_3



Time-bounded until – $P_{\sim p} [\phi_1 U^{[t,t']} \phi_2]$

- In this case the computation can be split into two parts:
- + 1. Probability of remaining in φ_1 states until time t
 - can be computed as transient probabilities on the CTMC where are states satisfying $\neg \varphi_1$ have been made absorbing
- 2. Probability of reaching a ϕ_2 state, while remaining in states satisfying ϕ_1 , within the time interval [0,t'-t]

- i.e. computing $\underline{\text{Prob}}(\varphi_1 \ U^{[0,t'-t]} \ \varphi_2)$



Time-bounded until – $P_{\sim p} [\phi_1 U^{[t,t']} \phi_2]$

- Let $Prob_{\phi_1}(s, \phi_1 U^{[0,t'-t]}\phi_2) = Prob(s, \phi_1 U^{[0,t'-t]}\phi_2)$ if $s \in Sat(\phi_1)$ and 0 otherwise
- From the previous slide we have:

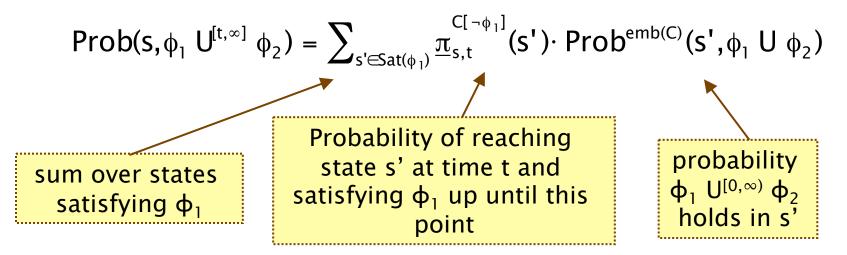
$$\begin{split} \underline{\operatorname{Prob}}(\varphi_{1} \ U^{[t,t']} \ \varphi_{2}) &= \Pi_{t}^{C[-\varphi_{1}]} \cdot \underline{\operatorname{Prob}}_{\varphi_{1}}(\varphi_{1} \ U^{[0,t'-t]} \ \varphi_{2}) \\ &= \left(\sum_{i=0}^{\infty} \gamma_{q\cdot t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[-\varphi_{1}])} \right)^{i} \right) \underline{\operatorname{Prob}}_{\varphi_{1}}(\varphi_{1} \ U^{[0,t'-t]} \ \varphi_{2}) \\ &= \sum_{i=0}^{\infty} \left(\gamma_{q\cdot t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[-\varphi_{1}])} \right)^{i} \cdot \underline{\operatorname{Prob}}_{\varphi_{1}}(\varphi_{1} \ U^{[0,t'-t]} \ \varphi_{2}) \right) \end{split}$$

- summation can be truncated using Fox and Glynn [FG88]
- can compute iteratively (only scalar and matrix-vector operations)

Time-bounded until – $P_{-p} [\phi_1 U^{[t,\infty)} \phi_2]$

- Similar to the case for $\phi_1 U^{[t,t']} \phi_2$ except second part is now unbounded, and hence the embedded DTMC can be used
- + 1. Probability of remaining in ϕ_1 states until time t
- + 2. Probability of reaching a φ_2 state, while remaining in states satisfying φ_1

- i.e. computing $\underline{\text{Prob}}(\phi_1 \ U^{[0,\infty)} \phi_2)$



Time-bounded until – $P_{\sim p} [\phi_1 U^{[t,\infty)} \phi_2]$

• Letting $Prob_{\phi_1}(s, \phi_1 U^{[0,\infty)}\phi_2) = Prob(s, \phi_1 U^{[0,\infty)}\phi_2)$ if $s \in Sat (\phi_1)$ and 0 otherwise, we have:

$$\underline{\operatorname{Prob}}(\varphi_{1} \ U^{[t,\infty]} \ \varphi_{2}) = \Pi_{t}^{C[-\varphi_{1}]} \cdot \underline{\operatorname{Prob}}_{\varphi_{1}}^{\operatorname{emb}(C)}(\varphi_{1} \ U \ \varphi_{2})$$

$$= \left(\sum_{i=0}^{\infty} \gamma_{q:t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[-\varphi_{1}])} \right)^{i} \right) \underline{\operatorname{Prob}}_{\varphi_{1}}^{\operatorname{emb}(C)}(\varphi_{1} \ U \ \varphi_{2})$$

$$= \sum_{i=0}^{\infty} \left(\gamma_{q:t,i} \cdot \left(\operatorname{P}^{\operatorname{unif}(C[-\varphi_{1}])} \right)^{i} \cdot \underline{\operatorname{Prob}}_{\varphi_{1}}^{\operatorname{emb}(C)}(\varphi_{1} \ U \ \varphi_{2}) \right)$$

- summation can be truncated using Fox and Glynn [FG88]
- can compute iteratively (only scalar and matrix-vector operations

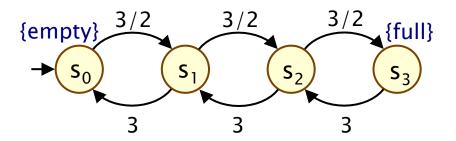
Model Checking – $S_{\sim p}$ [φ]

- A state s satisfies the formula $S_{\sim p}[\phi]$ if $\Sigma_{s' \models \phi} \underline{\pi}^{C}_{s}(s') \sim p$
 - $\underline{\pi}^{\text{C}}_{\text{s}}(\text{s'})$ is probability, having started in state s, of being in state s' in the long run
- Thus reduces to computing and then summing steadystate probabilities for the CTMC
- If CTMC is irreducible:
 - solution of one linear equation system
- If CTMC is reducible:
 - determine set of BSCCs for the CTMC
 - solve two linear equation systems for each BSCC T
 - one to obtain the vector ProbReachemb(C)(T)
 - the other to compute the steady state probabilities $\underline{\pi}^{\mathsf{T}}$ for T

$S_{\sim p}$ [φ] – Example

- S_{<0.1}[full]
- CTMC is irreducible (comprises a single BSCC)
 - steady state probabilities independent of starting state
 - can be computed by solving $\underline{\pi} \cdot \mathbf{Q} = 0$ and $\sum \underline{\pi}(s) = 1$

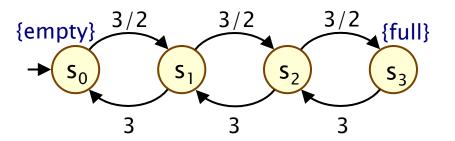
$$Q = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$



$S_{\sim p}$ [φ] – Example

 $\begin{array}{rcl} -3/2 \cdot \underline{\pi}(s_0) &+& 3 \cdot \underline{\pi}(s_1) &=& 0\\ 3/2 \cdot \underline{\pi}(s_0) &-& 9/2 \cdot \underline{\pi}(s_1) &+& 3 \cdot \underline{\pi}(s_2) &=& 0\\ && & 3/2 \cdot \underline{\pi}(s_1) &-& 9/2 \cdot \underline{\pi}(s_2) &+& 3 \cdot \underline{\pi}(s_3) &=& 0\\ && & & & 3/2 \cdot \underline{\pi}(s_2) &-& 3 \cdot \underline{\pi}(s_3) &=& 0 \end{array}$

 $\underline{\pi}(s_0) + \underline{\pi}(s_1) + \underline{\pi}(s_2) + \underline{\pi}(s_3) = 1$



- solution: $\underline{\pi} = [8/15, 4/15, 2/15, 1/15]$

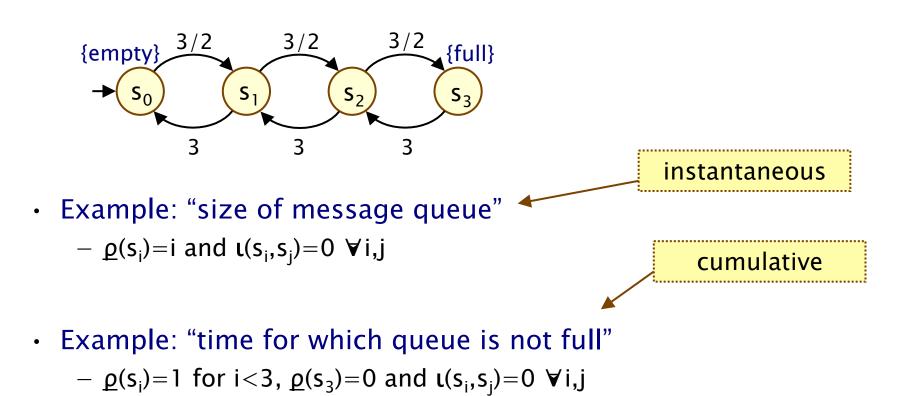
$$- \Sigma_{s' \models Sat(full)} \underline{\pi}(s') = 1/15 < 0.1$$

- so all states satisfy $S_{<0.1}$ [full]

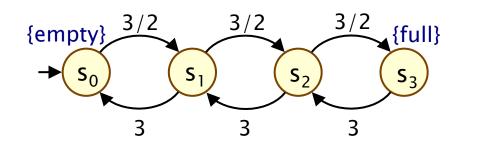
Rewards (or costs)

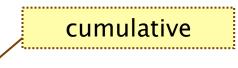
- Like DTMCs, we can augment CTMCs with rewards
 - real-valued quantities assigned to states and/or transitions
 - can be interpreted in two ways: instantaneous/cumulative
 - properties considered here: expected value of rewards
 - formal property specifications in an extension of CSL
- For a CTMC (S, s_{init} , **R**, L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}: S \rightarrow \mathbb{R}_{\geq 0}$ is a vector of state rewards
 - $-\iota: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is a matrix of transition rewards
- For cumulative reward-based properties of CTMCs
 - state rewards interpreted as rate at which reward gained
 - if the CTMC remains in state s for $t \in \mathbb{R}_{>0}$ time units, a reward of $t \cdot \underline{\rho}(s)$ is acquired

Reward structures - Examples



Reward structures - Examples





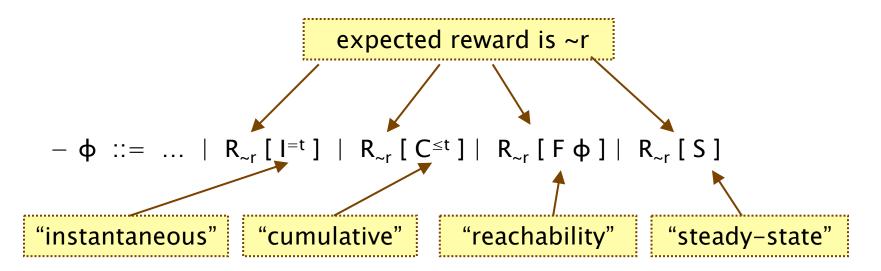
• Example: "number of requests served"

$$\rho = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \iota = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CSL and rewards

PRISM extends CSL to incorporate reward-based properties

- adds R operator like the one added to PCTL



- where r,t $\in \mathbb{R}_{\geq 0}$, ~ $\in \{<,>,\leq,\geq\}$

• R_{r} [•] means "the expected value of • satisfies r"

Types of reward formulae

- Instantaneous: R_{-r} [$I^{=t}$]
 - the expected value of the reward at time-instant t is \sim r
 - "the expected queue size after 6.7 seconds is at most 2"
- Cumulative: R_{-r} [$C^{\leq t}$]
 - the expected reward cumulated up to time-instant t is ${\sim}r$
 - "the expected requests served within the first 4.5 seconds of operation is less than 10"
- Reachability: R_{r} [F ϕ]
 - the expected reward cumulated before reaching φ is ~r
 - "the expected requests served before the queue becomes full"
- Steady-state R_{r} [S]
 - the long-run average expected reward is ~r
 - "expected long-run queue size is at least 1.2"

Reward properties in PRISM

- Quantitative form:
 - e.g. $R_{=?}$ [$C^{\leq t}$]
 - what is the expected reward cumulated up to time-instant t?
- Add labels to R operator to distinguish between multiple reward structures defined on the same CTMC

$$- e.g. R_{num_{req}=?} [C^{\leq 4.5}]$$

- "the expected number of requests served within the first 4.5 seconds of operation"
- e.g. $R_{\text{\{pow\}}=?}$ [$C^{\leq 4.5}$]
- "the expected power consumption within the first 4.5 seconds of operation"

Reward formula semantics

- Formal semantics of the four reward operators:
 - $s \models R_{r} [I^{=t}] \iff Exp(s, X_{I=t}) \sim r$
 - $s \vDash R_{\sim r} [C^{\leq t}] \qquad \Leftrightarrow \qquad Exp(s, X_{C \leq t}) \sim r$
 - $s \models R_{\sim r} [F \Phi] \iff Exp(s, X_{F\Phi}) \sim r$
 - $s \vDash R_{r} [S] \qquad \Leftrightarrow \qquad \lim_{t \to \infty} (1/t \cdot Exp(s, X_{C \le t})) \sim r$
- where:
 - Exp(s, X) denotes the expectation of the random variable X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

• Definition of random variables:

$$\begin{aligned} - \text{ path } \omega &= s_0 t_0 s_1 t_1 s_2 \dots & \text{ state of } \omega \text{ at time t } \\ X_{i=k}(\omega) &= \underline{\rho}(\omega @ t) & \text{ time spent in state } s_i \\ X_{c\leq t}(\omega) &= \sum_{i=0}^{j_t-1} (t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1})) + (t - \sum_{i=0}^{j_t-1} t_i) \cdot \underline{\rho}(s_{j_t}) \\ X_{F\varphi}(\omega) &= \begin{cases} 0 & \text{ if } s_0 \in \text{Sat}(\varphi) \\ \infty & \text{ if } s_i \notin \text{Sat}(\varphi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_{\varphi}-1} t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{ otherwise} \end{cases} \end{aligned}$$

- where $j_t = \min\{ j \mid \sum_{i \le j} t_i \ge t \}$ and $k_{\varphi} = \min\{ i \mid s_i \vDash \varphi \}$

Model checking reward formulae

- Instantaneous: R_{-r} [$I^{=t}$]
 - reduces to transient analysis (state of the CTMC at time t)
 - use uniformisation
- Cumulative: R_{-r} [$C^{\leq t}$]
 - extends approach for time-bounded until
 - based on uniformisation
- Reachability: R_{r} [F ϕ]
 - can be computed on the embedded DTMC
 - reduces to solving a system of linear equations
- Steady-state: R_{~r} [S]
 - similar to steady state formulae $S_{\sim r}$ [φ]
 - graph based analysis (compute BSCCs)
 - solve systems of linear equations (compute steady state probabilities of each BSCC)

CSL model checking complexity

- For model checking of a CTMC complexity:
 - linear in $|\Phi|$ and polynomial in |S|
 - linear in $q \cdot t_{max}$ (t_{max} is maximum finite bound in intervals)
- $P_{\sim p}[\Phi_1 \ U^{[0,\infty)} \ \Phi_2], S_{\sim p}[\Phi], R_{\sim r} \ [F \ \Phi] and R_{\sim r} \ [S]$
 - require solution of linear equation system of size $\left|S\right|$
 - can be solved with Gaussian elimination: cubic in |S|
 - precomputation algorithms (max |S| steps)
- + $P_{\sim p}[\Phi_1 \ U^I \ \Phi_2]$, $R_{\sim r} \ [C^{\leq t}]$ and $R_{\sim r} \ [I^{=t}]$
 - at most two iterative sequences of matrix-vector products
 - operation is quadratic in the size of the matrix, i.e. |S|
 - total number of iterations bounded by Fox and Glynn
 - the bound is linear in the size of $q \cdot t$ (q uniformisation rate)

Summing up...

- Model checking a CSL formula ϕ on a CTMC
 - recursive: bottom-up traversal of parse tree of $\boldsymbol{\varphi}$
- Main work: computing probabilities for P and S operators
 - untimed (X Φ , Φ_1 U Φ_2): perform on embedded DTMC
 - time-bounded until: use uniformisation-based methods, rather than more expensive solution of integral equations
 - other forms of time-bounded until, i.e. $[t_1,t_2]$ and $[t,\infty)$, reduce to two sequential computations like for [0,t]
 - S operator: summation of steady-state probabilities
- Rewards similar to DTMCs
 - except for continuous-time accumulation of state rewards
 - extension of CSL with R operator
 - model checking of R comparable with that of P